Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.280
Filtrar
1.
Adv Mater ; : e2313251, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702890

RESUMO

Film formation kinetics significantly impact molecular processability and power conversion efficiency (PCE) of organic solar cells. Here, two ternary random copolymerization polymers are reported, D18─N-p and D18─N-m, to modulate the aggregation ability of D18 by introducing trifluoromethyl-substituted pyridine unit at para- and meta-positions, respectively. The introduction of pyridine unit significantly reduces material aggregation ability and adjusts the interactions with acceptor L8-BO, thereby leading to largely changed film formation kinetics with earlier phase separation and longer film formation times, which enlarge fiber sizes in blend films and improve carrier generation and transport. As a result, D18─N-p with moderate aggregation ability delivers a high PCE of 18.82% with L8-BO, which is further improved to 19.45% via interface engineering. Despite the slightly inferior small area device performances, D18─N-m shows improved solubility, which inspires to adjust the ratio of meta-trifluoromethyl pyridine carefully and obtain a polymer donor D18─N-m-10 with good solubility in nonhalogenated solvent o-xylene. High PCEs of 13.07% and 12.43% in 1 cm2 device and 43 cm2 module fabricated with slot-die coating method are achieved based on D18─N-m-10:L8-BO blends. This work emphasizes film formation kinetics optimization in device fabrication via aggregation ability modulation of polymer donors for efficient devices.

2.
Environ Res ; 252(Pt 3): 119046, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704004

RESUMO

Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m2/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.

3.
Pharm Dev Technol ; : 1-13, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38721970

RESUMO

The present study aims to investigate the potential of the 3D printing technique to design gastroretentive floating tablets (GFTs) for modifying the drug release profile of an immediate-release tablet. A 3D-printed floating shell enclosing a captopril tablet was designed having varying number of drug-release windows. The impact of geometrical changes in the design of delivery system and thermal cross-linking of polymers were evaluated to observe the influence on floating ability and drug release. Water uptake, water insolubilization, Differential Scanning Calorimetry (DSC), and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) were performed to assess the degree of thermal cross-linking of polyvinyl alcohol (PVA) filament. The 3D-printed GFT9 was considered the optimized gastric floating tablet that exhibited >12 h of total floating time with zero floating lag time and successfully accomplished modified-drug release by exhibiting >80% of drug release in 8 h. The zero-order release model, with an r2 value of 0.9923, best fitted the drug release kinetic data of the GFT9, which followed a super case II drug transport mechanism with an n value of 0.95. The optimized gastric floating device (GFT9) also exhibited the highest MDT values (238.55), representing slow drug release from the system due to thermal crosslinking and the presence of a single drug-releasing window in the device.

4.
Magn Reson Imaging ; 111: 138-147, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729225

RESUMO

OBJECTIVES: To explore the potential and performance of quantitative and semi-quantitative parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on compressed sensing volumetric interpolated breath-hold (CS-VIBE) examination in the differential diagnosis of thyroid nodules. MATERIALS AND METHODS: A total of 208 patients with 259 thyroid nodules scheduled for surgery operation were prospectively recruited. All participants underwent routine and DCE-MRI. DCE-MRI quantitative parameters [Ktrans, Kep, Ve], semi-quantitative parameters [wash-in, wash-out, time to peak (TTP), arrival time (AT), peak enhancement intensity (PEI), and initial area under curve in 60 s (iAUC)] and time-intensity curve (TIC) types were analyzed. Differential diagnostic performances were assessed using area under the receiver operating characteristic curve (AUC) and compared with the Delong test. RESULTS: Ktrans, Kep, Ve, wash-in, wash-out, PEI and iAUC were statistically significantly different between malignant and benign nodules (P < 0.001). Among these parameters, ROC analysis revealed that Ktrans showed the highest diagnostic performance in the differentiation of benign and malignant nodules, followed by wash-in. ROC analysis also revealed that Ktrans achieved the best diagnostic performance for distinguishing papillary thyroid carcinoma (PTC) from non-PTC, follicular adenoma (FA) from non-FA, nodular goiter (NG) from non-NG, with AUC values of 0.854, 0.895 and 0.609, respectively. Type III curve is frequently observed in benign thyroid nodules, accounting for 77.4% (82/106). While malignant nodules are more common in type II, accounting for 57.5% (88/153). CONCLUSION: Thyroid examination using CS-VIBE based DCE-MRI is a feasible, non-invasive method to identify benign and malignant thyroid nodules and pathological types.

5.
J Sports Sci ; : 1-12, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734986

RESUMO

Unanticipated trunk perturbation is commonly observed when anterior cruciate ligament (ACL) injuries occur during direction-changing manoeuvres. This study aimed to quantify the effect of mid-flight medial-lateral external trunk perturbation directions/locations on ACL loading variables during sidestep cuttings. Thirty-two recreational athletes performed sidestep cuttings under combinations of three perturbation directions (no-perturbation, ipsilateral-perturbation, and contralateral-perturbation relative to the cutting leg) and two perturbation locations (upper-trunk versus lower-trunk). The pushing perturbation was created by customised devices releasing a slam ball to contact participants near maximum jump height prior to cutting. Perturbation generally resulted in greater peak vertical ground reaction force and slower cutting velocity. Upper-trunk contralateral perturbation showed the greatest lateral trunk bending away from the travel direction, greatest peak knee flexion and abduction angles, and greatest peak internal knee adduction moments compared to other conditions. Such increased ACL loading variables were likely due to the increased lateral trunk bending and whole-body horizontal velocity away from the cutting direction caused by the contralateral perturbation act at the upper trunk. The findings may help understand the mechanisms of indirect contact ACL injuries and develop effective cutting techniques for ACL injury prevention.

6.
Food Res Int ; 186: 114350, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729698

RESUMO

In this study, three types of ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels, ß-sitosterol + lecithin, oleogels and ß-sitosterol + monostearate oleogels), loaded with astaxanthin, were employed as the oil phase to create oleogel-based emulsions (SO, SL, and SM) using high-pressure homogenization. The microstructure revealed that fine-scale crystals were dispersed within the oil phase of the droplets in the ß-sitosterol oleogel-based emulsion. The bioaccessibility of astaxanthin was found to be 58.13 %, 51.24 %, 36.57 %, and 45.72 % for SM, SL, SO, and the control group, respectively. Interestingly, the release of fatty acids was positively correlated with the availability of astaxanthin (P = 0.981). Further analysis of FFAs release and kinetics indicated that the structural strength of the oil-phase in the emulsions influenced the degree and rate of lipolysis. Additionally, the micellar fraction analysis suggested that the nature and composition of the oleogelators in SM and SL also impacted lipolysis and the bioaccessibility of astaxanthin. Furthermore, interfacial binding of lipase and isothermal titration calorimetry (ITC) measurements revealed that the oleogel network within the oil phase of the emulsion acted as a physical barrier, hindering the interaction between lipase and lipid. Overall, ß-sitosterol oleogel-based emulsions offer a versatile platform for delivering hydrophobic molecules, enhancing the bioavailability of active compounds, and achieving sustained release.


Assuntos
Emulsões , Compostos Orgânicos , Sitosteroides , Xantofilas , Sitosteroides/química , Xantofilas/química , Compostos Orgânicos/química , Disponibilidade Biológica , Lipólise , Lecitinas/química , Ácidos Graxos/química , Fenilpropionatos
7.
Environ Res ; 252(Pt 3): 118976, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705451

RESUMO

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.

8.
Chemosphere ; 359: 142253, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714250

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a large class of stable toxic chemicals which have ended up in the environment and in organisms in significant concentrations. Toxicokinetic models are needed to facilitate extrapolation of bioaccumulation data across PFAS congeners and species. For the present study, we carried out an inventory of accumulation processes specific for PFAS, deviating from traditional Persistent Organic Pollutants (POPs). In addition, we reviewed toxicokinetic models on PFAS reported in literature, classifying them according to the number of compartments distinguished as a one-compartment model (1-CM), two-compartment model (2- CM) or a multi-compartment model, (multi-CM) as well as the accumulation processes included and the parameters used. As the inventory showed that simple 1-CMs were lacking, we developed a generic 1-CM of ourselves to include PFAS specific processes and validated the model for legacy perfluoroalkyl acids. Predicted summed elimination constants were accurate for long carbon chains (>C6), indicating that the model properly represented toxicokinetic processes for most congeners. Results for urinary elimination rate constants were mixed, which might be caused by the exclusion of reabsorption processes (renal reabsorption, enterohepatic circulation). The 1-CM needs to be improved further in order to better predict individual elimination pathways. Besides that, more data on PFAS-transporter specific processes are needed to extrapolate across PFAS congeners and species.

9.
Front Chem ; 12: 1367276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711947

RESUMO

Since the dawn of photochemistry 150 years ago, photoreactions have been conducted under polychromatic light. However, despite the pivotal role that photokinetics should naturally play for such reactive photosystems, the literature lacks a comprehensive description of that area. Indeed, one fails to identify explicit model integrated rate laws for these reactions, a characteristic type for their kinetic behavior, or their kinetic order. In addition, there is no consensus in the community on standardized investigative tools to evaluate the reactivity of these photosystems, nor are there venues for the discussion of such photokinetic issues. The present work is a contribution addressing some of these knowledge gaps. It proposes an unprecedented general formula capable of mapping out the kinetic traces of photoreactions under polychromatic light irradiation. This article quantitatively discusses several reaction situations, including the effects of initial reactant concentration and the presence of spectator molecules. It also develops a methodology for standardizing actinometers and defines and describes both the spectral range of highest reactivity and the photonic yield. The validity of the model equation has been proven by comparing its results to both theoretical counterparts and those generated by fourth-order Runge-Kutta numerical calculations. For the first time, a confirmation of the Φ-order character of the kinetics under polychromatic light was established.

10.
Pediatr Exerc Sci ; : 1-7, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714302

RESUMO

PURPOSE: The aim of this investigation was to assess alterations of pulmonary oxygen uptake (V˙O2) and muscle deoxygenation on-kinetics during heavy-intensity cycling in youth cyclists over a period of 15 months. METHODS: Eleven cyclists (initial age, 14.3 [1.6] y; peak V˙O2, 62.2 [4.5] mL·min-1·kg-1) visited the laboratory twice on 3 occasions within 15 months. Participants performed an incremental ramp exercise test and a constant workrate test within the heavy-intensity domain during the first visit and second visit, respectively. Subsequently, parameter estimates of the V˙O2 and muscle deoxygenation on-kinetics were determined with mono-exponential models. RESULTS: The V˙O2 phase II time constant decreased from occasion 1 (34 [4] s) to occasion 2 (30 [4] s, P = .005) and 3 (28 [4] s, P = .010). However, no significant alteration was observed between occasions 2 and 3 (P = .565). The V˙O2 slow component amplitude either expressed in absolute values (ie, L·min-1) or relative to end exercise V˙O2 (ie, %) showed no significant changes throughout the study (P = .972 and .996). Furthermore, the muscle deoxygenation on-kinetic mean response time showed no significant changes throughout the study (18 [8], 18 [3], and 16 [5] s for occasions 1, 2, and 3, respectively; P = .279). CONCLUSION: These results indicate proportional enhancements of local muscle oxygen distribution and utilization, which both contributed to the speeding of the V˙O2 on-kinetics herein.

11.
Cell Rep ; 43(5): 114225, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733582

RESUMO

Protospacer-adjacent motif (PAM) recognition licenses Cas nucleases for genome engineering applications, thereby restricting gene targeting to PAM-containing regions. Protein engineering has led to PAM-relaxed SpCas9 variants like SpG and SpRY. Given the evolved role of PAMs in facilitating target-searching kinetics, it remains unclear how these variants quickly locate their targets. We show that SpG and SpRY exhibit a preference for the seed region. To compensate for the relaxed PAM recognition, SpRY has evolved a sequence preference for the seed region through interactions with A61R and A1322R. Furthermore, SpCas9 exhibits a significant decrease in target search kinetics on high-PAM-density DNA, slowing down up to three orders of magnitude compared to low-PAM-density DNA, suggesting the necessity for sequence recognition even in PAM-relaxed variants. This underscores the importance of considering Cas9 target-searching kinetics in SpCas9 PAMless engineering, providing valuable insights for further PAMless Cas9 protein engineering efforts.

12.
Curr Res Struct Biol ; 7: 100146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707547

RESUMO

Nowadays, one of the methods to prevent the progress of Alzheimer's disease (AD) is to prescribe compounds that inhibit the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Researchers are actively pursuing compounds, particularly of natural origin, that exhibit enhanced efficacy and reduced side effects. The inhibition of AChE and BChE using natural flavonoids represents a promising avenue for regulating AD. This study aims to identify alternative flavonoids capable of modulating AD by down-regulating AChE and BChE activity through a molecular docking approach. Molecular docking analysis identified Ginkgetin and Kolaflavanone as potent inhibitors of AChE and BChE, respectively, among the selected flavonoids. Asn87 and Ala127 involved in the interactions of AChE-Ginkgetin complex through conventional hydrogen bonds. While in the BChE-Kolaflavanone complex, Asn83, Ser79, Gln 47, and Ser287 are involved. In vitro analysis further corroborated the inhibitory potential, with Ginkgetin exhibiting an IC50 of 3.2 mM against AChE, and Kolaflavanone displaying an IC50 of 3.6 mM against BChE. These findings underscore the potential of Ginkgetin and Kolaflavanone as candidate inhibitors for the treatment of AD through the inhibition of AChE and BChE enzymes. Nevertheless, additional in vitro and in vivo studies are imperative to validate the efficacy of these compounds.

13.
Int J Biol Macromol ; : 132164, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729474

RESUMO

The process of developing novel compounds/drugs is arduous, time-intensive, and financially burdensome, characterized by a notably low success rate and relatively high attrition rates. To alleviate these challenges, compound/drug repositioning strategies are employed to predict potential therapeutic effects for DrugBank-approved compounds across various diseases. In this study, we devised a computational and enzyme inhibitory mechanistic approach to identify promising compounds from the pool of DrugBank-approved substances targeting Diabetes Mellitus (DM). Molecular docking analyses were employed to validate the binding interaction patterns and conformations of the screened compounds within the active site of α-glucosidase. Notably, Asp352 and Glu277 participated in interactions within the α-glucosidase-ligand complexes, mediated by conventional hydrogen bonding and van der Waals forces, respectively. The stability of the docked complexes (α-glucosidase-compounds) was scrutinized through Molecular Dynamics (MD) simulations. Subsequent in vitro analyses assessed the therapeutic potential of the repositioned compounds against α-glucosidase. Kinetic studies revealed that "Forodesine" exhibited a lower IC50 (0.24 ±â€¯0.04 mM) compared to the control, and its inhibitory pattern corresponds to that of competitive inhibitors. In-depth in silico secondary structure content analysis detailed the interactions between Forodesine and α-glucosidase, unveiling significant alterations in enzyme conformation upon binding, impacting its catalytic activity. Overall, our findings underscore the potential of Forodesine as a promising candidate for DM treatment through α-glucosidase inhibition. Further validation through in vitro and in vivo studies is imperative to confirm the therapeutic benefits of Forodesine in conformational diseases such as DM.

14.
Int J Pharm ; 657: 124189, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701906

RESUMO

Amorphous solid dispersions (ASDs) represent an important approach for enhancing oral bioavailability for poorly water soluble compounds; however, assuring that these ASDs do not recrystallize to a significant extent during storage can be time-consuming. Therefore, various efforts have been undertaken to predict ASD crystallization levels with kinetic models. However, only limited success has been achieved due to limits on crystal content quantification methods and the complexity of crystallization kinetics. To increase the prediction accuracy, the accelerated stability assessment program (ASAP), employing isoconversion (time to hit a specification limit) and a modified Arrhenius approach, are employed here for predictive shelf-life modeling. In the current study, a model ASD was prepared by spray drying griseofulvin and HPMC-AS-LF. This ASD was stressed under a designed combinations of temperature, relative humidity and time with the conditions set to ensure stressing was carried out below the glass transition temperature (Tg) of the ASD. Crystal content quantification method by X-ray powder diffraction (XRPD) with sufficient sensitivity was developed and employed for stressed ASD. Crystallization modeling of the griseofulvin ASD using ASAPprime® demonstrated good agreement with long-term (40 °C/75 %RH) crystallinity levels and support the use of this type of accelerated stability studies for further improving ASD shelf-life prediction accuracy.

15.
Gait Posture ; 111: 169-175, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705034

RESUMO

BACKGROUND: The decline in cognitive function in older adults with mild cognitive impairment (MCI) may contribute to a change in movement pattern during sit-to-stand transitions (STS). However, when comparing older adults with MCI to older adults without MCI, there is a lack of evidence of kinematic and kinetic data during STS. Furthermore, while significant cognitive dual-task interference has been demonstrated in older adults with MCI, studies on the effects of dual motor tasks in MCI, particularly during STS, have not been reported. RESEARCH QUESTION: Are there any differences in the movement time, joint angles, and maximum joint moments while performing STS under single- and dual-task conditions in older adults with and without MCI? METHODS: In a cross-sectional study, 70 participants were divided into two groups: older adults with MCI and without MCI. Motion analysis and a force plate system were used to collect and analyze the STS movement. All participants were asked to do the STS movement alone and the STS with a dual motor task with the self-selected pattern on an adjustable bench. RESULTS: Older adults with MCI had greater maximum trunk flexion during STS with a dual task than older adults without MCI and greater than STS alone. Furthermore, older adults with MCI had a greater ankle plantar flexion moment during STS with a dual task than during STS alone. SIGNIFICANCE: Even though the STS task is one of the simplest functional activities, different strategies to achieve the STS action with dual tasks were found among older adults with and without MCI in terms of joint angle and joint moments.

16.
Int J Phytoremediation ; : 1-10, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725313

RESUMO

Synthetic dyes are prevalent in aquatic environments, they have high toxicities, are non-degradable, and accumulate in the water. The removal of Crystal violet (CV) is carried out using batch experiments on the Salsola Tetragona (ST) plant as a novel adsorbent. The prepared adsorbent was analyzed by various methods (MEB, EDX, IRTF and PZC), to support its applicability as adsorbent. The adsorption study of CV is performed by optimizing the parameters affecting the adsorption process. The adsorption kinetics study is represented by pseudo-second-order (R2 = 0.999) and the adsorption process is limited by external mass transport. In addition, the isotherm results demonstrate that the Langmuir model interprets better the adsorption isotherm. The thermodynamic parameters suggest that the adsorption phenomena are spontaneous and exothermic. Furthermore, the adsorption reactions involved are of physisorption type, which facilitates the desorption of pollutants from the surface of the adsorbent. The results show that ST adsorbent effectively removes CV in an aqueous solution, which is demonstrated by the maximum amount adsorption of 246.7 mg.g-1 at optimum adsorption conditions: pH = 6, adsorbent dose of 0.5 g.L-1, initial CV concentration of 10 mg.L-1, and adsorption time of 30 min at 298 K. Finally, these results can be considered as a useful reference for wastewater treatment using ST.


The novelty of our work, entitled "Salsola Tetragona as a New Low-Cost Adsorbent for Water Treatment: Highly Effective Adsorption of Crystal Violet", lies in the utilization of a new biomass abundant in the southwestern region of Morocco. This plant as a novel material is used in its raw state as an adsorbent for removing a cationic dye. According to the literature, this material has not been previously employed in water treatment. Hence, to fill the gap in the literature, we examined its in-batch adsorption to remove crystal violet from the aqueous solution. The results show a high adsorption capacity compared to other natural biomass.

17.
J Exp Biol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726554

RESUMO

Secure landing is indispensable for both leaping animals and robotics. Tree frogs, renowned for their adhesive capabilities, can effectively jump across intricate 3D terrain and land safely. Compared to jumping, the mechanisms underlying their landing technique, particularly in arboreal environments, have remained largely unknown. In this study, we focused on the landing patterns of the tree frogs Polypedates Dennysi on horizontally placed perches, explicitly emphasizing the impact of perch diameters. Tree frogs demonstrated diverse landing postures, including the utilization of (1) single front foot, (2) double front feet, (3) anterior bellies, (4) middle bellies, (5) posterior bellies, (6) single hind foot, or (5) double hind feet. Generally, tree frogs favour bellies on slimmer targets but double front feet on large perches. Analysis of limb-trunk relationships revealed their adaptability to modifying postures, including body positions and limb orientations, for successful landing. The variations in the initial landing postures affect the succeeding landing procedures and, consequently, the dynamics. As the initial contact position was switched from front foot to hind foot, the stabilization time decreased first, reaching the minimum in middle belly landings, and then increased. The maximum vertical forces changed in an inverse trend, whereas the maximum fore-aft forces continuously increased as the initial contact position switched. As the perch diameter rose, the time expenses dropped, whereas the maximum impact increased. These findings not only added to our understanding of frog landings but also highlighted the necessity of considering perch diameters and landing styles when studying the biomechanics of arboreal locomotion.

18.
Antimicrob Agents Chemother ; : e0172023, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690895

RESUMO

The PER-2 ß-lactamase is a unique class A enzyme conferring broad spectrum cephalosporin resistance. In this study, we explored the stability of cefiderocol (FDC) against PER-2 ß-lactamase to gain insights into structure activity relationships (SAR) of this synthetic siderophore-conjugated antibiotic. Herein, we show that the MICs of FDC for PER-2 producing isolates and transformants ranged between 0.125 and 64 µg/mL; diazabicyclooctanes (DBOs) reduced the MIC values. In PER-2 mutants, MIC values decreased up to 10-12 dilutions in agreement with previous observations especially in the case of Arg220 substitutions. Catalytic efficiency for PER-2 was 0.072 µM-1 s-1, comparable with PER-1 (0.046 µM-1 s-1) and NDM-1 (0.067 µM-1 s-1). In silico models revealed that FDC within the active site of PER-2 demonstrates unique interactions as a result of the inverted Ω loop fold and extension of the ß3-ß4 connecting loop.

19.
Insect Biochem Mol Biol ; 170: 104130, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734116

RESUMO

Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38745464

RESUMO

Transition-metal species embedded in carbon have sparked intense interest in the fields of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, improvement of the electrocatalytic kinetics remains a challenge caused by the synergistic assembly. Here, we propose a biochemical strategy to fabricate the Co nanoparticles (NPs) and Co/Ni-N4-C co-embedded N-doped porous carbon (CoNPs&Co/Ni-N4-C@NC) catalysts via constructing the zeolitic imidazolate framework (ZIF)@yeast precursor. The rich amino groups provide the possibility for the anchorage of Co2+/Ni2+ ions as well as the construction of Co/Ni-ZIF@yeast through the yeast cell biomineralization effect. The functional design induces the formation of CoNPs and Co/Ni-N4-C sites in N-doped carbon as well as regulates the porosity for exposing such sites. Synergy of CoNPs, Co/Ni-N4-C, and porous N-doped carbon delivered excellent electrocatalytic kinetics (the ORR Tafel slope of 76.3 mV dec-1 and the OER Tafel slope of 80.4 mV dec-1) and a high voltage of 1.15 V at 10 mA cm-2 for the discharge process in zinc air batteries. It provides an effective strategy to fabricate high-performance catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...